Disjoint Sets

What are Disjoint Sets?

* A set with no duplicate items and each item only
belongs in one set.

e A setis a collection of items.
e EG:

- 1 ={a, c,d}(tems a, ¢ & d belong to set /)
- 2=1{b,e} (Items b & e belong to set 2)

e Used to solve Union-Find Problems

Data Structure

A disjoint set data structure support the following
operations:

* New-Set (x) Creates a new set {x}

 Union (x, y) Combines the set that x 1s in with
the set that y 1s 1n

* Find-Set (x) Finds which set x 1s in. (Must
obey Find-Set (x) = Find-Set (y))

Implementation

* Array with size max item

— Array [x] points to another item in set. If 1t points to
itself, then x 1s the value of the set.

— If items are text, you can use a hash table. Key = item
& value = set

* Make-Set (x): array[x] = x
* Find (x): Find (array [x]) until array [x] = x
 Union (x, y): array [find (x)] = array [find (V)]

Optimizing Find
* The find operation i1s O (log n). n = size of set

* To speed up operation, use “‘compression’.

— Caches the set, so future calls are O (/)

_ Lﬂ

IRt
1 2 3 4 5

2

Optimizing Unions
 Unions combine sets.
 Union (x, y) causes x's root to point to y's root

* To minimize depth of trees, we store the depth
of a tree, and add the shallower tree to the root
of the deeper tree.

o It depth = depthy, choose any root as the new

root and increase the new root's depth by 1.

 Union's efficiency 1s O (log n), but on average it
1s O (1).

Union Example

EEEU
5 6 1 2 3 4 5 6

1 2 3 4

Union Example 2

o R

Sets Array

1 2 3 4 5 6 7 1 2 3 4 5 6 7
slziti2is 14 s s 120514
100200 1100 %00

Depth Array

Pseudocode

Array sets, depth with size MAX

New-Set (x) :

Find-Set (x):

sets [x] = x

depth [x]= 0

if x not = sets [x] then
sets [x] = Find-Set (x)

endif

return sets [x]

Pseudocode Cont.

Union (x, y): x=Find-Set (x)
y = Find-Set (y)
if depth |x] > depth [y] then
sets |y] = x
endif
else then
sets |x] =y
if depth [x] = depth [y] then
depth [y] =depth [y] + 1
endif
endelse

Other Data Structures

* Arrays are static

* Dynamic Structures:

— Linked List
— Disjoint-Set Forest

Linked List

* [tems have fields: head, tail, next, size
 Find-Set (x) returns head [x]
* New-Set (x) head & tail = x; next =null; size = 1

e Union (x, y): x=Find-Set (x)
y = Find-Set (y)
if size[x] < size[y] then x <-> y endif
next [tail[x]] =y
tail [x] = tail [y]
size [x] = size [x] + size [y]
while y not = null do
head [y] = x

y = next [y]
endwhile

Linked List Representation

Disjoint Set Forest

* Each set 1s a tree with the root representing the
set.

* Items have fields: parent, depth.

* Slightly modify code used for arrays to use the
item's fields instead.

Uses in Graph Theory

Graph Connectivity:

* If the vertices are items and an edge represents a
union, x will be connected to y if

Find-Set (x) = Find-Set (y)

* If you are constantly checking connectivity (ie:
Kruskal), using Find-Set (O(/)) 1s more efficient
than DFS (O(n)).

