Disjoint Sets

What are Disjoint Sets?

- A set with no duplicate items and each item only belongs in one set.
- A set is a collection of items.
- EG:
 - $-1 = \{a, c, d\}$ (Items a, c & d belong to set 1)
 - $-2 = \{b, e\}$ (Items *b* & *e* belong to set 2)
- Used to solve Union-Find Problems

Data Structure

A disjoint set data structure support the following operations:

- New-Set (x) Creates a new set {x}
- Union (x, y) Combines the set that x is in with the set that y is in
- Find-Set (x) Finds which set x is in. (Must obey Find-Set (x) = Find-Set (y))

Implementation

- Array with size max item
 - Array [x] points to another item in set. If it points to itself, then x is the value of the set.
 - If items are text, you can use a hash table. Key = item
 & value = set
- Make-Set (x): array[x] = x
- Find (x): Find (array [x]) until array [x] = x
- Union (x, y): array [find (x)] = array [find (y)]

Optimizing Find

- The find operation is $0 (\log n)$. n = size of set
- To speed up operation, use "compression".
 - Caches the set, so future calls are O (1)

Optimizing Unions

- Unions combine sets.
- Union (x, y) causes x's root to point to y's root
- To minimize depth of trees, we store the depth of a tree, and add the shallower tree to the root of the deeper tree.
- If $depth_x = depth_y$, choose any root as the new root and increase the new root's depth by 1.
- Union's efficiency is O (log n), but on average it is O (1).

Union Example

Union Example 2

Depth Array

Pseudocode

Array sets, depth with size MAX

New-Set
$$(x)$$
: $sets [x] = x$
 $depth [x] = 0$

Find-Set
$$(x)$$
: if x not = $sets$ $[x]$ then
$$sets$$
 $[x]$ = Find-Set (x)
endif
$$return sets$$
 $[x]$

Pseudocode Cont.

```
Union (x, y): x = \text{Find-Set}(x)
                  y = Find-Set(y)
                  if depth[x] > depth[y] then
                     sets[y] = x
                  endif
                  else then
                     sets [x] = y
                     if depth[x] = depth[y] then
                        depth[y] = depth[y] + 1
                     endif
                  endelse
```

Other Data Structures

- Arrays are static
- Dynamic Structures:
 - Linked List
 - Disjoint-Set Forest

Linked List

- Items have fields: head, tail, next, size
- Find-Set (x) returns head [x]
- New-Set (x) head & tail = x; next = null; size = 1

```
• Union (x, y): x = \text{Find-Set }(x)

y = \text{Find-Set }(y)

if size[x] < size[y] then x <-> y endif

next[tail[x]] = y

tail[x] = tail[y]

size[x] = size[x] + size[y]

while y not = null do

head[y] = x

y = next[y]

endwhile
```

Linked List Representation

Disjoint Set Forest

- Each set is a tree with the root representing the set.
- Items have fields: parent, depth.
- Slightly modify code used for arrays to use the item's fields instead.

Uses in Graph Theory

Graph Connectivity:

- If the vertices are items and an edge represents a union, x will be connected to y if
 Find-Set (x) = Find-Set (y)
- If you are constantly checking connectivity (ie: Kruskal), using Find-Set (O(1)) is more efficient than DFS (O(n)).